Video: Volvo confirms research and development on F1-style KERS hybrid system for mass production

Volvo has been truly focusing on their alternative propulsion systems for their future models. As an example, the Swedish automaker has just confirmed that they’re testing their own F1-style KERS system, much like the one found on the Ferrari La Ferrari supercar.

“The testing of this complete experimental system for kinetic energy recovery was carried out during 2012. The results show that this technology combined with a four-cylinder turbo engine has the potential to reduce fuel consumption by up to 25 percent compared with a six-cylinder turbo engine at a comparable performance level,” said Volvo’s vice president of powertrain engineering, Derek Crabb, “Giving the driver an extra 80 horsepower, it makes car with a four-cylinder engine accelerate like one with a six-cylinder unit.”

The KERS acronym stands for Kinetic Energy Recovery System, which features a unique flywheel setup that is fitted to the rear axle of select Volvos. When the equipped model brakes, the energy produced from braking forces the KERS’s flywheel to rev up to 60,000 RPM. That kinetic energy is then transferred to the rear wheels via bespoke transmission whenever speed needs to be resumed.

“The flywheel’s stored energy is sufficient to power the car for short periods. This has a major impact on fuel consumption. Our calculations indicate that it will be possible to turn off the combustion engine about half the time when driving according to the official New European Driving Cycle,” explained Crabb.

Volvo’s current prototype is an S60, which has been equipped with the Flywheel KERS system. It can sprint from 0-62 mph in just 5.5 seconds, thanks to the extra 80hp supplied by the system.

For full details, check out the press release and video below.

Volvo Cars tests of flywheel technology confirm fuel savings of up to 25 per cent

Volvo Car Group has completed extensive testing of kinetic flywheel technology on public roads – and the results confirm that this is a light, cheap and very eco-efficient solution.

Apr 25, 2013 — “The testing of this complete experimental system for kinetic energy recovery was carried out during 2012. The results show that this technology combined with a four-cylinder turbo engine has the potential to reduce fuel consumption by up to 25 percent compared with a six-cylinder turbo engine at a comparable performance level,” says Derek Crabb, Vice President Powertrain Engineering at Volvo Car Group, “Giving the driver an extra 80 horsepower, it makes car with a four-cylinder engine accelerate like one with a six-cylinder unit.”

The experimental system, known as Flywheel KERS (Kinetic Energy Recovery System), is fitted to the rear axle. During retardation, the braking energy causes the flywheel to spin at up to 60,000 revs per minute. When the car starts moving off again, the flywheel’s rotation is transferred to the rear wheels via a specially designed transmission.

The combustion engine that drives the front wheels is switched off as soon as braking begins. The energy in the flywheel can then be used to accelerate the vehicle when it is time to move off again or to power the vehicle once it reaches cruising speed.

Most efficient in city traffic
“The flywheel’s stored energy is sufficient to power the car for short periods. This has a major impact on fuel consumption. Our calculations indicate that it will be possible to turn off the combustion engine about half the time when driving according to the official New European Driving Cycle,” explains Derek Crabb.

Since the flywheel is activated by braking, and the duration of the energy storage – that is to say the length of time the flywheel spins – is limited, the technology is at its most effective during driving featuring repeated stops and starts. In other words, the fuel savings will be greatest when driving in busy urban traffic and during active driving.

If the energy in the flywheel is combined with the combustion engine’s full capacity, it will give the car an extra 80 horsepower and, thanks to the swift torque build-up, this translates into rapid acceleration, cutting 0 to 100 km/h figures by seconds. The experimental car, a Volvo S60, accelerates from 0 to 100 km/h in 5.5 seconds.

Carbon fibre for a lightweight and compact solution
Flywheel propulsion assistance was tested in a Volvo 260 back in the 1980s, and flywheels made of steel have been evaluated by various manufacturers in recent times. However, since a unit made of steel is large and heavy and has rather limited rotational capacity, this is not a viable option.

The flywheel that Volvo Cars used in the experimental system is made of carbon fibre. It weighs about six kilograms and has a diameter of 20 centimetres. The carbon fiber wheel spins in a vacuum to minimise frictional losses.

“We are the first manufacturer that has applied flywheel technology to the rear axle of a car fitted with a combustion engine driving the front wheels. The next step after completing these successful tests is to evaluate how the technology can be implemented in our upcoming car models,” concludes Derek Crabb.

– By: Chris Chin

Video Source: WorldCarFans YouTube


TOYOTA OEM 09-15 Tacoma Front Suspension-Shock Absorber 4851009U61 picture
TOYOTA OEM 09-15 Tacoma Front Suspension-Shock Absorber 4851009U61
HEIDTS ROD SHOP GM F-Body 1970-81 Pro-G Front Suspension Kit P/N CF-201-WT picture
HEIDTS ROD SHOP GM F-Body 1970-81 Pro-G Front Suspension Kit P/N CF-201-WT
Pair Rear Air Suspension Spring Bag for 2007-2013 BMW X5 E70 X6 E71 E72 picture
Pair Rear Air Suspension Spring Bag for 2007-2013 BMW X5 E70 X6 E71 E72
Lexus IS Is350 Electric Suspension Strut Front Left Fits  2014 2015 2016 2017 picture
Lexus IS Is350 Electric Suspension Strut Front Left Fits 2014 2015 2016 2017
VW VOLKSWAGEN OEM 05-15 Jetta Front Suspension-Strut Mount Bearing 1K0412249B picture
VW VOLKSWAGEN OEM 05-15 Jetta Front Suspension-Strut Mount Bearing 1K0412249B